学习来源:极客时间-MySQL实战45讲,本人购买课程后依据图文讲解汇总成个人见解。
前言
前文介绍了InnoDB的间隙锁、next-key lock,以及加锁规则。此处罗列几个有代表性的问题,加深对加锁规则的理解。
为了方便理解,一起复习一下加锁规则。这个规则中,包含了两个“原则”、两个“优化”和一个“bug”:
- 原则1:加锁的基本单位是next-key lock。希望你还记得,next-key lock是前开后闭区间。
- 原则2:查找过程中访问到的对象才会加锁。
- 优化1:索引上的等值查询,给唯一索引加锁的时候,next-key lock退化为行锁。
- 优化2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock退化为间隙锁。
- 一个bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。
接下来,我们的讨论还是基于下面这个表t:
1 | CREATE TABLE `t` ( |
1. 不等号条件里的等值查询
有朋友对“等值查询”提出了疑问:等值查询和“遍历”有什么区别?为什么文章的例子里面,where条件是不等号,这个过程里也有等值查询?
我们一起来看下这个例子,分析一下这条查询语句的加锁范围:
1 | begin; |
利用上面的加锁规则,我们知道这个语句的加锁范围是主键索引上的 (0,5]、(5,10]和(10, 15)。也就是说,id=15这一行,并没有被加上行锁。为什么呢?
我们说加锁单位是next-key lock,都是前开后闭区间,但是这里用到了优化2,即索引上的等值查询,向右遍历的时候id=15不满足条件,所以next-key lock退化为了间隙锁 (10, 15)。
但是,我们的查询语句中where条件是大于号和小于号,这里的“等值查询”又是从哪里来的呢?
要知道,加锁动作是发生在语句执行过程中的,所以你在分析加锁行为的时候,要从索引上的数据结构开始。这里,我再把这个过程拆解一下。
如图1所示,是这个表的索引id的示意图。
首先这个查询语句的语义是order by id desc,要拿到满足条件的所有行,优化器必须先找到“第一个id<12的值”。
这个过程是通过索引树的搜索过程得到的,在引擎内部,其实是要找到id=12的这个值,只是最终没找到,但找到了(10,15)这个间隙。
然后向左遍历,在遍历过程中,就不是等值查询了,会扫描到id=5这一行,所以会加一个next-key lock (0,5]。
也就是说,在执行过程中,通过树搜索的方式定位记录的时候,用的是“等值查询”的方法。
2. 等值查询的过程
与上面这个例子对应的,是@发条橙子同学提出的问题:下面这个语句的加锁范围是什么?
1 | begin; |
这条查询语句里用的是in,我们先来看这条语句的explain结果。
可以看到,这条in语句使用了索引c并且rows=3,说明这三个值都是通过B+树搜索定位的。
在查找c=5的时候,先锁住了(0,5]。但是因为c不是唯一索引,为了确认还有没有别的记录c=5,就要向右遍历,找到c=10才确认没有了,这个过程满足优化2,所以加了间隙锁(5,10)。
同样的,执行c=10这个逻辑的时候,加锁的范围是(5,10] 和 (10,15);执行c=20这个逻辑的时候,加锁的范围是(15,20] 和 (20,25)。
通过这个分析,我们可以知道,这条语句在索引c上加的三个记录锁的顺序是:先加c=5的记录锁,再加c=10的记录锁,最后加c=20的记录锁。
你可能会说,这个加锁范围,不就是从(5,25)中去掉c=15的行锁吗?为什么这么麻烦地分段说呢?
因为我要跟你强调这个过程:这些锁是“在执行过程中一个一个加的”,而不是一次性加上去的。
理解了这个加锁过程之后,我们就可以来分析下面例子中的死锁问题了。
如果同时有另外一个语句,是这么写的:
1 | select id from t where c in(5,20,10) order by c desc for update; |
此时的加锁范围,又是什么呢?
我们现在都知道间隙锁是不互锁的,但是这两条语句都会在索引c上的c=5、10、20这三行记录上加记录锁。
这里你需要注意一下,由于语句里面是order by c desc, 这三个记录锁的加锁顺序,是先锁c=20,然后c=10,最后是c=5。
也就是说,这两条语句要加锁相同的资源,但是加锁顺序相反。当这两条语句并发执行的时候,就可能出现死锁。
关于死锁的信息,MySQL只保留了最后一个死锁的现场,但这个现场还是不完备的。
现在,我就来简单分析一下上面这个例子的死锁现场。
3. 怎么看死锁?
图3是在出现死锁后,执行show engine innodb status命令得到的部分输出。这个命令会输出很多信息,有一节LATESTDETECTED DEADLOCK,就是记录的最后一次死锁信息。
我们来看看这图中的几个关键信息。
这个结果分成三部分:
- (1) TRANSACTION,是第一个事务的信息;
- (2) TRANSACTION,是第二个事务的信息;
- WE ROLL BACK TRANSACTION (1),是最终的处理结果,表示回滚了第一个事务。
第一个事务的信息中:
- WAITING FOR THIS LOCK TO BE GRANTED,表示的是这个事务在等待的锁信息;
- index c of table
test
.t
,说明在等的是表t的索引c上面的锁; - lock mode S waiting 表示这个语句要自己加一个读锁,当前的状态是等待中;
- Record lock说明这是一个记录锁;
- n_fields 2表示这个记录是两列,也就是字段c和主键字段id;
- 0: len 4; hex 0000000a; asc ;;是第一个字段,也就是c。值是十六进制a,也就是10;
- 1: len 4; hex 0000000a; asc ;;是第二个字段,也就是主键id,值也是10;
- 这两行里面的asc表示的是,接下来要打印出值里面的“可打印字符”,但10不是可打印字符,因此就显示空格。
- 第一个事务信息就只显示出了等锁的状态,在等待(c=10,id=10)这一行的锁。
- 当然你是知道的,既然出现死锁了,就表示这个事务也占有别的锁,但是没有显示出来。别着急,我们从第二个事务的信息中推导出来。
第二个事务显示的信息要多一些:
- “ HOLDS THE LOCK(S)”用来显示这个事务持有哪些锁;
- index c of table
test
.t
表示锁是在表t的索引c上; - hex 0000000a和hex 00000014表示这个事务持有c=10和c=20这两个记录锁;
- WAITING FOR THIS LOCK TO BE GRANTED,表示在等(c=5,id=5)这个记录锁。
从上面这些信息中,我们就知道:
“lock in share mode”的这条语句,持有c=5的记录锁,在等c=10的锁;
“for update”这个语句,持有c=20和c=10的记录锁,在等c=5的记录锁。
因此导致了死锁。这里,我们可以得到两个结论:
由于锁是一个个加的,要避免死锁,对同一组资源,要按照尽量相同的顺序访问;
在发生死锁的时刻,for update 这条语句占有的资源更多,回滚成本更大,所以InnoDB选择了回滚成本更小的lock in share mode语句,来回滚。
4. 怎么看锁等待?
看完死锁,我们再来看一个锁等待的例子。
可以看到,由于session A并没有锁住c=10这个记录,所以session B删除id=10这一行是可以的。但是之后,session B再想insert id=10这一行回去就不行了。
现在我们一起看一下此时show engine innodb status的结果,看看能不能给我们一些提示。锁信息是在这个命令输出结果的TRANSACTIONS这一节。你可以在文稿中看到这张图片
我们来看几个关键信息。
index PRIMARY of table
test
.t
,表示这个语句被锁住是因为表t主键上的某个锁。lock_mode X locks gap before rec insert intention waiting 这里有几个信息:
- insert intention表示当前线程准备插入一个记录,这是一个插入意向锁。为了便于理解,你可以认为它就是这个插入动作本身。
- gap before rec 表示这是一个间隙锁,而不是记录锁。
那么这个gap是在哪个记录之前的呢?接下来的0~4这5行的内容就是这个记录的信息。
n_fields 5也表示了,这一个记录有5列:
- 0: len 4; hex 0000000f; asc ;;第一列是主键id字段,十六进制f就是id=15。所以,这时我们就知道了,这个间隙就是id=15之前的,因为id=10已经不存在了,它表示的就是(5,15)。
- 1: len 6; hex 000000000513; asc ;;第二列是长度为6字节的事务id,表示最后修改这一行的是trx id为1299的事务。
- 2: len 7; hex b0000001250134; asc % 4;; 第三列长度为7字节的回滚段信息。可以看到,这里的acs后面有显示内容(%和4),这是因为刚好这个字节是可打印字符。
- 后面两列是c和d的值,都是15。
因此,我们就知道了,由于delete操作把id=10这一行删掉了,原来的两个间隙(5,10)、(10,15)变成了一个(5,15)。
说到这里,你可以联合起来再思考一下这两个现象之间的关联:
session A执行完select语句后,什么都没做,但它加锁的范围突然“变大”了;
当我们执行select * from t where c>=15 and c<=20 order by c desc lock in share mode; 向左扫描到c=10的时候,要把(5, 10]锁起来。
也就是说,所谓“间隙”,其实根本就是由“这个间隙右边的那个记录”定义的。
5. update的例子
看过了insert和delete的加锁例子,我们再来看一个update语句的案例。在留言区中@信信 同学做了这个试验:
你可以自己分析一下,session A的加锁范围是索引c上的 (5,10]、(10,15]、(15,20]、(20,25]和(25,supremum]。
注意:根据c>5查到的第一个记录是c=10,因此不会加(0,5]这个next-key lock。
之后session B的第一个update语句,要把c=5改成c=1,你可以理解为两步:
插入(c=1, id=5)这个记录;
删除(c=5, id=5)这个记录。
按照我们上一节说的,索引c上(5,10)间隙是由这个间隙右边的记录,也就是c=10定义的。所以通过这个操作,session A的加锁范围变成了图7所示的样子:
好,接下来session B要执行 update t set c = 5 where c = 1这个语句了,一样地可以拆成两步:
插入(c=5, id=5)这个记录;
删除(c=1, id=5)这个记录。
第一步试图在已经加了间隙锁的(1,10)中插入数据,所以就被堵住了。
6.思考
所谓“间隙”,其实根本就是由“这个间隙右边的那个记录”定义的。
那么,一个空表有间隙吗?这个间隙是由谁定义的?你怎么验证这个结论呢?
回答:
一个空表就只有一个间隙。比如,在空表上执行:
1 | begin; |
这个查询语句加锁的范围就是next-key lock (-∞, supremum]。
验证方法的话,你可以使用下面的操作序列。你可以在图4中看到显示的结果。