Author: haoransun
WeChat: SHR—97
1 图像缩放
缩放是对图像的大小进行调整,即使图像放大或缩小。
- API参数:
1
cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)
插值是指在对图像进行几何处理时,给无法直接通过映射得到值的像素点赋值。例如,将图像放大为原来的2倍,必然会多出一些无法被直接映射值的像素点,对于这些像素点,插值方式决定了如何确定它们的值。除此以外,还会存在一些非整数的映射值,例如,反向映射可能会把目标图像中的像素点值映射到原始图像中的非整数值对应的位置上,当然原始图像内是不可能存在这样的非整数位置的,即目标图像上的该像素点不能对应到原始图像的某个具体位置上,此时也要对这些像素点进行插值处理,以完成映射
通数 cv2.resize()能实现对原始图像的缩放功能,需要注意的是,开始运算前,操作前的目标图像dst 自身的大小、类型与最终得到的目标图像是没有任何关系的,目标图像 dst 的最终大小和类型是通过 src、dsize 、fx、fy 指定的。如果想让原始图像调整为和目标图像一样大,得必须通过上述属性指定
当缩小图像时,使用区域插值方式( INTER_AREA)能够得到最好的效果,当放大图像时,使用三次样条插值( INTER_CUBIC)方式和双线性插值( INTER_LINEAR)方式都能够取得较好的效果。三次择条插值方式速度较慢。双线性插值方式速度相对较快且效果并不逊色
示例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27import cv2 as cv
# 1\. 读取图片
img1 = cv.imread("./image/dog.jpeg")
# 2.图像缩放
# 2.1 绝对尺寸
rows,cols = img1.shape[:2]
res = cv.resize(img1,(2*cols,2*rows),interpolation=cv.INTER_CUBIC)
# 2.2 相对尺寸
res1 = cv.resize(img1,None,fx=0.5,fy=0.5)
# 3 图像显示
# 3.1 使用opencv显示图像(不推荐)
cv.imshow("orignal",img1)
cv.imshow("enlarge",res)
cv.imshow("shrink)",res1)
cv.waitKey(0)
# 3.2 使用matplotlib显示图像
fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,8),dpi=100)
axes[0].imshow(res[:,:,::-1])
axes[0].set_title("绝对尺度(放大)")
axes[1].imshow(img1[:,:,::-1])
axes[1].set_title("原图")
axes[2].imshow(res1[:,:,::-1])
axes[2].set_title("相对尺度(缩小)")
plt.show()
2 图像平移
图像平移将图像按照指定方向和距离,移动到相应的位置。
- API
1 | cv.warpAffine(img,M,dsize) |
需求是将图像的像素点移动(100,50)的距离:
1 | import numpy as np |
3 图像旋转
图像旋转是指图像按照某个位置转动一定角度的过程,旋转中图像仍保持这原始尺寸。图像旋转后图像的水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。
那图像是怎么进行旋转的呢?如下图所示:
同时我们要修正原点的位置,因为原图像中的坐标原点在图像的左上角,经过旋转后图像的大小会有所变化,原点也需要修正。
假设在旋转的时候是以旋转中心为坐标原点的,旋转结束后还需要将坐标原点移到图像左上角,也就是还要进行一次变换。
在OpenCV中图像旋转首先根据旋转角度和旋转中心获取旋转矩阵,然后根据旋转矩阵进行变换,即可实现任意角度和任意中心的旋转效果。
API
1
cv2.getRotationMatrix2D(center, angle, scale)
参数:
- center:旋转中心
- angle:旋转角度
- scale:缩放比例
返回:
M:旋转矩阵
调用cv.warpAffine完成图像的旋转
示例
1 | import numpy as np |
4 仿射变换
图像的仿射变换涉及到图像的形状位置角度的变化,是深度学习预处理中常到的功能,仿射变换主要是对图像的缩放,旋转,翻转和平移等操作的组合。
那什么是图像的仿射变换,如下图所示,图1中的点1, 2 和 3 与图二中三个点一一映射, 仍然形成三角形, 但形状已经大大改变,通过这样两组三点(感兴趣点)求出仿射变换, 接下来我们就能把仿射变换应用到图像中所有的点中,就完成了图像的仿射变换。
需要注意的是,对于图像而言,宽度方向是x,高度方向是y,坐标的顺序和图像像素对应下标一致。所以原点的位置不是左下角而是左上角,y的方向也不是向上,而是向下。
在仿射变换中,原图中所有的平行线在结果图像中同样平行。为了创建这个矩阵我们需要从原图像中找到三个点以及他们在输出图像中的位置。然后cv2.getAffineTransform 会创建一个 2x3 的矩阵,最后这个矩阵会被传给函数 cv2.warpAffine。
示例
1 | import numpy as np |
5 透射变换
透射变换是视角变化的结果,是指利用透视中心、像点、目标点三点共线的条件,按透视旋转定律使承影面(透视面)绕迹线(透视轴)旋转某一角度,破坏原有的投影光线束,仍能保持承影面上投影几何图形不变的变换。
- 示例
1 | import numpy as np |
6 图像金字塔
图像金字塔是图像多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。
图像金字塔用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。
金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似,层级越高,图像越小,分辨率越低。
API
1
2cv.pyrUp(img) #对图像进行上采样
cv.pyrDown(img) #对图像进行下采样示例
1
2
3
4
5
6
7
8
9
10
11
12
13
14import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 图像读取
img = cv.imread("./image/image2.jpg")
# 2 进行图像采样
up_img = cv.pyrUp(img) # 上采样操作
img_1 = cv.pyrDown(img) # 下采样操作
# 3 图像显示
cv.imshow('enlarge', up_img)
cv.imshow('original', img)
cv.imshow('shrink', img_1)
cv.waitKey(0)
cv.destroyAllWindows()
总结
图像缩放:对图像进行放大或缩小
cv.resize()
图像平移:
指定平移矩阵后,调用cv.warpAffine()平移图像
图像旋转:
调用cv.getRotationMatrix2D获取旋转矩阵,然后调用cv.warpAffine()进行旋转
仿射变换:
调用cv.getAffineTransform将创建变换矩阵,最后该矩阵将传递给cv.warpAffine()进行变换
透射变换:
通过函数cv.getPerspectiveTransform()找到变换矩阵,将cv.warpPerspective()进行投射变换
金字塔
图像金字塔是图像多尺度表达的一种,使用的API:
cv.pyrUp(): 向上采样
cv.pyrDown(): 向下采样
1 | import os |